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Abstract. Free vibration characteristics for an Euler-Bernoulli beam supported 
using a simple Winkler linear elastic foundation are calculated. The method of 
solution is by He’s variational iteration method developed for various boundary 
(end) conditions. The beam’s natural frequencies and mode shapes are obtained, 
with rapid convergence noted during the calculations. The calculation method is 
tested using a clamped-clamped beam. In this paper a robust and efficient algo-
rithm is also given, based on the He’s method, which can be easily modified for 
more complicated elastic foundations. 
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1 Introduction 

Beams resting on elastic foundations have a wide application in modern engineering, 
including railway engineering, but pose technical problems in structural design [1].  
The Winkler model of elastic foundation is one of the simplest, where the vertical 
displacement of the beam is assumed to be proportional to the contact pressure at an 
arbitrary point [2]. A variety of investigations on free vibration, buckling and stability 
behavior of Winkler foundation beams have been conducted by researchers [3-6]. 
He’s variational iteration method is a modification of a general Lagrange multiplier 
method [7] and has been used as a powerful tool for calculating free vibration [8-9]. 
In this paper, we proceed to investigate the free vibrations of an Euler-Bernoulli beam 
resting on an elastic foundation using the relatively new and more efficient method by 
He [10]. 

2 Governing Equation and Application of He’s Method 

The equation of motion for transverse vibrations of a uniform Euler-Bernoulli beam 
resting on a Winkler elastic foundation, as shown on Fig. 1, can be written as 
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= 0,						0 < 푥 < 푙. (1) 

 

 
Fig. 1. Euler-Bernoulli beam on Winkler foundation 

Using 푤(푥, 푡) = 푊(푥)ℎ(푡) and without loss of generality Eq. (1) is now made non-
dimensional to give 
  

 d 푊(푋)
d푋 − 푃푊(푋) = 0,					표 < 푋 < 1, (2) 

 
where 푃 is the eigenvalue of the problem and is equal to 
 
 푃 =

(푘 (푋)− 휌퐴휔 )푙
퐸퐼 . (3) 

 
The correctional function can now be obtained 
 

 
푊 (푋) = 푊 (푋) + 휆

d 푊 (푡)
d푡

− 푃푊 (푡) d푡, (4) 

 
and the Lagrange multiplier 휆 can be found as 
 

 
휆 =

(푡 − 푋)
6

. (5) 

 
To start the iterations associated with Eq. (4) the 푊 (푋) term is needed, which is 
represented as a Maclaurin series of the first four terms, and the solution of is found 
as 푊(푋) = lim → 푊(푋) . The boundary conditions can also be written in dimension-
less form 
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d푋 + 훼
d 푊(푋)

d푋 + 훼
d푊(푋)

d푋 + 훼 푊(푋) = 0, 푟 = 1,2, 

 
(6) 

훽
d 푊(푋)

d푋 + 훽
d 푊(푋)

d푋 + 훽
d푊(푋)

d푋 + 훽 푊(푋) = 0, 푟 = 1,2. 

 
For Eq. (6), the second of the boundary conditions can be rewritten as 
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푓[ ](푃)푊( )(0) = 0,				푟 = 1,2. (7) 

 
Here, 푓| | are polynomials of 푃 with respect to 푘. On solving the first boundary con-
dition of Eq. (6) and Eq. (7) simultaneously for the non-trivial solutions  푊( )(0)(푗 =
0,1,2,3), the 푖th eigenvalue 푃[ ] corresponding to 푘 can be obtained, and the number 
of iterations 푀 is decided from 
 

 푃[ ] − 푃[ ] ≤ 휀 (8) 

 

3 Numerical Example: Clamped-Clamped (C-C) Beam 

The following are results for a C-C beam. Important to this study is the efficiency of 
the method, which is demonstrated in Fig. 2. The variational iteration method proved 
extremely fast with convergence achieved after very few iterations. The linear modu-
lus used in Fig. 2 and Table 1 took the form 푘 = 푘 (1− 훼푋). 

 

 
Fig. 2. Convergence for the first six natural frequencies when 푘 = 50, 훼 = 0.2. 

The frequency parameters for the C-C beam with a linear elastic modulus are shown 
in Table 1. These values compare well with the equivalent found in the literature [9]. 

Table 1. Frequency parameters for C-C beam with linear foundation modulus (휶 = ퟎ.ퟐ). 
풌풘ퟎ 훀ퟏ 훀ퟐ 훀ퟑ 훀ퟒ 훀ퟓ 훀ퟔ 

      1 
10 
50 
100 
200 
2000 

4.73217 
4.75116 
4.83294 
4.92965 
5.10758 
6.92482 

7.85367 
7.85785 
7.87633 
7.89925 
7.94451 
8.65221 

10.99578 
10.99730 
11.00407 
11.01250 
11.02930 
11.31955 

14.13718 
14.13792 
14.14103 
14.14508 
14.15305 
14.29380 

17.27933 
17.28016 
17.28250 
17.28361 
17.28789 
17.36672 

20.39929 
20.39638 
20.41832 
20.42077 
20.39431 
20.46750 
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Fig. 3. Mode shapes for the first three natural vibrations and the effect of the linear foundation 
parameter, 훼	on the natural frequencies. 

The mode shape functions shown in Fig. 3 are obtained using the eigenvalues and a 
polynomial formed in terms of 푋. The second diagram in Fig. 3 shows the effect of 
increasing the slope of the linear function on the natural frequency. Basically the nat-
ural frequency falls linearly.  
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